
Karuah & Great Lakes Landcare – Farm Dam Field Day, The Branch

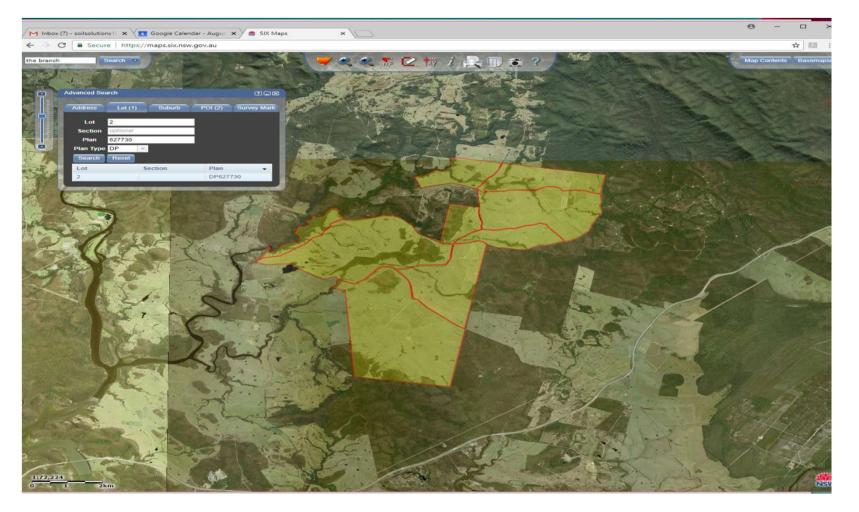
Field Day Program

- Determining Harvestable Rights
- Sizing your farm dams
- Planning your farm dams
- Estimating catchment areas
- Estimating earth in dam walls
- Building a Dam
- Managing your dam
- Track construction and maintenance
- Soils
- Site inspections

Harvestable Rights – Do I need a licence

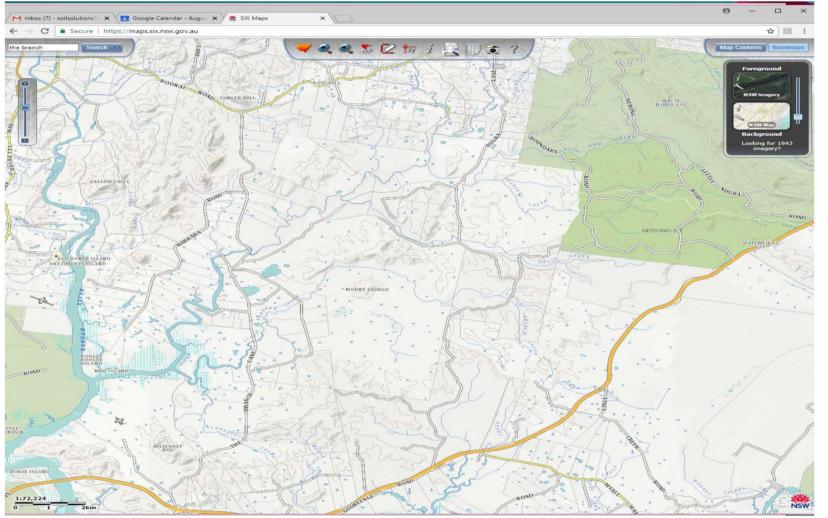
A licence is not required for the following dams in NSW.

- Dams constructed on First or Second order streams that capture 10% of the average regional rainfall runoff
- Dams built before 1st Jan 1999 that are used for stock and domestic purposes and located on First or Second order streams
- Dams up to 1 megalitre on small size properties with a MHRDC less than 1 meg approved before 1st Jan 1999



Calculating your harvestable rights

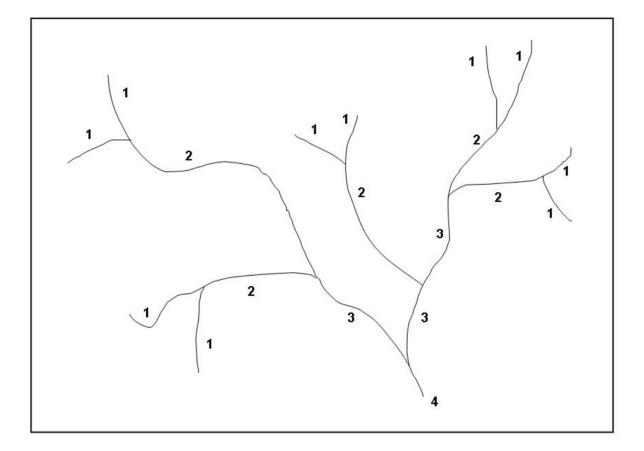
- Determine your property area in Hectares
 - Leased or ajisted land not included
 - Rates notice
 - Six maps or google maps a tool to calculate property size
- Find dam capacity multiplier NSW Water guide
- Multiply both to determine MHRDC for property



Property Location by Six Maps

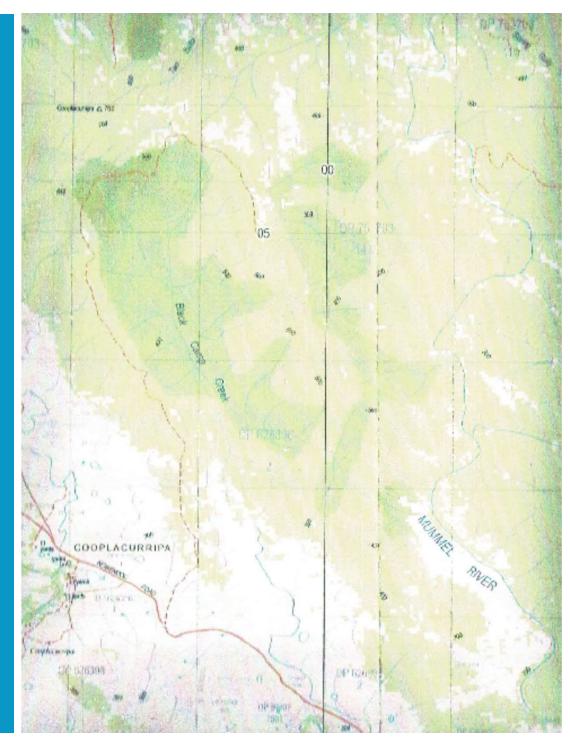
Property topography map in Six Viewer

Harvestable Rights Calculation Sheet

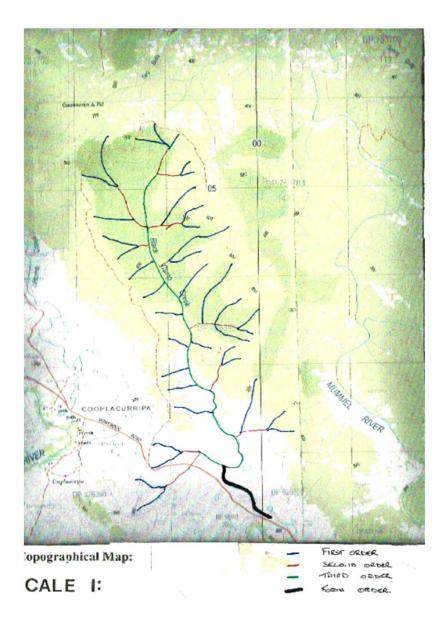

Farm Dams Property Assessment SVVS

ADDING VALUE TO THE NATURAL ASSETS OF NEW SOUTH WALES

						Calculation	mar Maximum	Harvestable Right Dam		
Postal Address					Capacity (M	HRDC)	the restored region of the			
						Property Area	Property Area Isa			
						Multiplier	Meg	alitees per becture (from maps)		
						MHRESC Megalities (property area a multiplier				
Dum Norse or number	Whitsh (m)	Length (m)	Surface Area (seps)	Max Depth (m)	Storings Fuctor (0.4)	Appens Volume cubic metros (m)	Dam Capacity (ML)	Additional Information of Contractor's name, Due constructed		
Ep Rum palkkek	30	40	1200	3	0.4	1440	L.44	John Citizea, 1975		
and the set of the local second										
	- 11-									
	-									
						1				
		1								
					-	1				
			1	-	1.1					
			1	1						
			1	1						
	1		Te	stal Exi	sting Da	nt Capacity (A)		NIL .		
		Masimum Itarvestable Right Data Capacity (B)								
						IN CHERRY (D)		ML		
	N	lasimu	in Harve	stable l	City Da	fac top of this sheet)				
	N	lasimu	ia Harve	stable l	Chen.	he top of this sheet)	L	1 4		
	Factor	rs			Ch.cn	fic topol this sheet)	If (B) is 1	arreer than (A)		
I Megalitre (MI.	Factor) == 1,90	rs It cohic			Ch.cn	fic topol this sheet)		arger than (A)		
Conversion I Megalite (ML I ML = 1308 cu) I yaed = 0.9141	Factor) == 1,00 bic yant	rs It cohic			Ch.cn	fic topol this sheet)		arger than (A) not need a licence		



Stream Order system



Exercise -Determine the stream orders for Black Camp Creek

Stream orders

Planning Farm Dams

- 1. Estimate water requirements
- 2. Select the site & dam shape
- 3. Estimate volume and rate of runoff from catchment
- 4. Soil Investigation construction technique

Estimate Storage Requirements

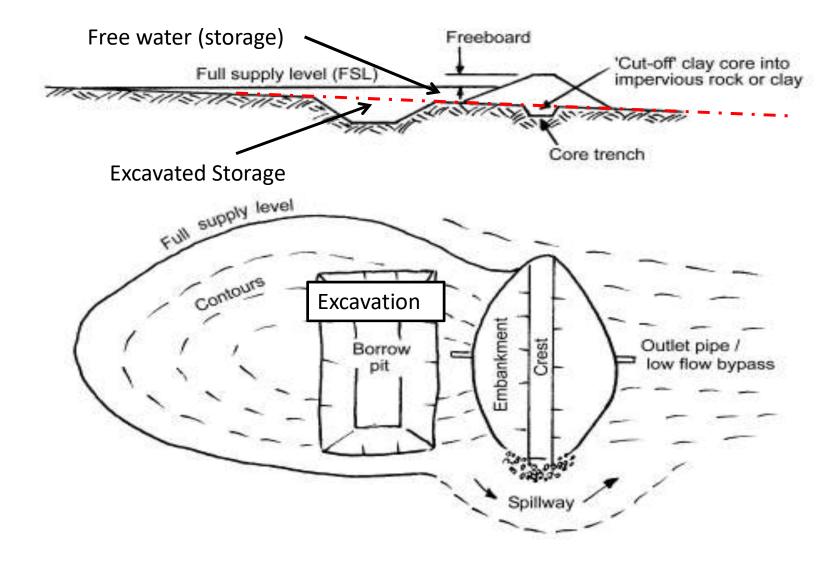
- Need to provide sufficient water storage capacity for:
 - Total stock and domestic water requirements
 - Allowance for seepage
 - Allowance for evaporation

Stock & Domestic Water Requirements

Туре	Daily Consumption (Litres per head)	Numbers	Summer (OCT – MARCH) Litres per month per head	Winter (APR - SEPT) Litres per month per head	Total Water Requirements (litres
Domestic – with septic	175		5250	5250	
Cattle					
Dairy	70		2100	1400	
Beef	45		1350	900	
Feedlot	90		2700	1800	
Calves	25		750	500	
Sheep	4.5		135	70	
Lambs – Half Sheep					
Horses	55		1650	1100	
Pigs	25		750	450	
Poultry – Per 100 birds	40		1200	1000	
Total stock water requirements					

Stock & Domestic Water Requirements - Example

Туре	Daily Consumption (Litres per head)	Numbers	Summer (OCT – MARCH) Litres per month per head	Winter (APR - SEPT) Litres per month per head	Total Water Requirements (litres)
Domestic – with septic	175	4	5250	5250	252,000
Cattle					
Dairy	70	50	2100	1400	1,050,000
Beef	45	80	1350	900	1,080,000
Feedlot	90		2700	1800	
Calves	25		750	500	
Sheep	4.5		135	70	
Lambs – Half Sheep					
Horses	55	10	1650	1100	165,000
Pigs	25		750	450	
Poultry – Per 100 birds	40		1200	1000	
Total stock water requirements					2,547,000
				/1,000 to = m3	2,547.00
				1,000m3 = 1 Megalitre	2.57ML



Evaporation and Seepage Losses

- On areas east of the Great Dividing Range allow:
 - 25% loss through seepage in dam
 - 50% Evaporation loss
 - Therefore for every 1 megalitre of storage required a dam of 1.75 to2 Megalitres will need to be constructed

Components of a Dam

Excavation

- Storage reservoir that will not seep
- Provides soil for the embankment (wall)
- Good depth of water (>2m)

Embankment

- Not to allow excessive seepage
- Constructed from excavation area
- High enough so not to be overtopped (Freeboard)
- Strong enough to hold the water resting against it
- Make sure keyed into existing soil

Spillway

- Allows excess water around the dam without damaging the

embankment

Spillway should outlet to flat

area with good grass cover

- Adequate width (ensure depth < 0.3m)
- Channel must be >1m lower

than crest of embankment (freeboard)

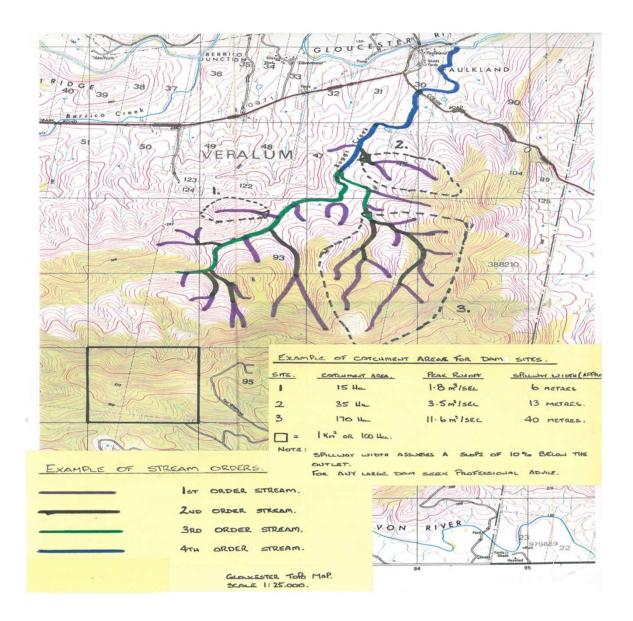
Spillway

Types of Dams - Gully

- Earth
- Curved or straight wall
- Across gully, depression
- Good S/E ratio (up to 10:1)

Types of Dams - Hillside

- 3-sided or curved bank
- Incorporate catch drains
- S/E ratio =1 to 1.5
- Ensure water covers excavation area


Types of Dams – Excavated Tanks

- Square, rectangular or round
- Excavated below natural ground surface
- Filled from surface runoff collected from catch drains or pumped into from creek or river
- Flat landscapes
- Maximum S/E ratio =1

Estimating Catchment Areas

Estimating Annual Runoff Volume

(for NSW Catchments <260Ha)

Average	Total		Runoff as percentage of average annual rainfall (P)					
annual rainfall (R)	annual evapor- ation	Reliability (years out of 10)	Shallow sand or loarn soils	Sandy clays	Elastic clays	Clay pans inelastic clays or shales		
(mm)	(mm)		(%)	(%)	(%)	(%)		
over 1100		8	10 to 15	10 to 15	15 to 20	15 to 25		
		9	6.5 to 10	6.5 to 10	10 to 13	10 to 16.5		
901 to 1100		8	10 to 12.5	10 to 15	12.5 to 20	15 to 20		
		9	6.5 to 8	6.5 10 10	8 to 13	10 to 13		
501 to 900	less than	8	7.5 to 10	7.5 to 15	7.5 to 15	10 to 15		
	1300	9	5 10 6.5	5 to 10	5 to 10	6.5 to 10		
	1300 to 1800	8	5 10 7.5	5 10 12.5	5 to 10	10 to 15		
		9	3 to 5	3 to 8	3 10 6.5	6.5 to 10		
401 to 500	1300 to 1800	8	2.5 to 5	5 to 10	2.5 to 5	7.5 to 12.5		
		9	1.5 to 3	3 10 6.5	1.5 10 3	5 to 8		
250 to 400	less than	8	0 to 2.5	0 to 5	0 to 2.5	2.5 10 7.5		
	1800	9	0 to 1.5	0 to 3	0 to 1.5	1.5 to 5		
	more than	8	0	0 to 2.5	0	2.5 to 5		
	1800	9	0	0 10 1.5	0	1.5 to 3		

Calculating catchment runoff

Catchment Runoff (m^3) = A * R * P * 0.1

A = catchment area (Ha)

R = average annual rainfall (mm)

P = runoff percentage

Calculating catchment runoff

Town	Average Rainfall	Catchment area	run off %	Total run off - m ³	Run off - ML
Dungog/Gloucester/Tocal	940mm	Assume 10ha	7.50%	7,050	7 Megalitres
Dungog/Gloucester/Tocal	940mm	Assume 50ha	7.50%	35,250	32 ML
Muswellbrook/Merriwa	595mm	Assume 10ha	7.50%	4,460	4.4ML
Muswellbrook/Merriwa	595mm	Assume 50ha	5.00%	14,880	14.8ML
Newcastle/Gosford	1200	Assume 10ha	10%	12,000	12ML
Newcastle/Gosford	1200	Assume 50ha	10%	60,000	60ML

Calculating Earth in Gully Dam Wall

Example

Estimate the wall volume of a dam across a gully with the dimensions shown in Figure 42:

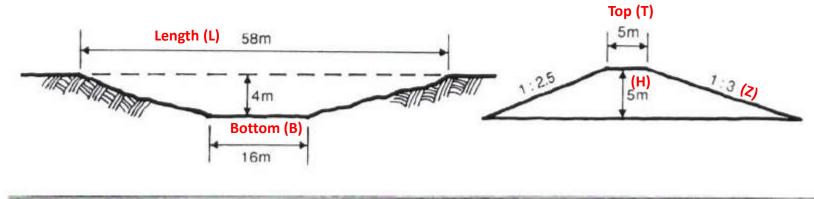


Figure 42

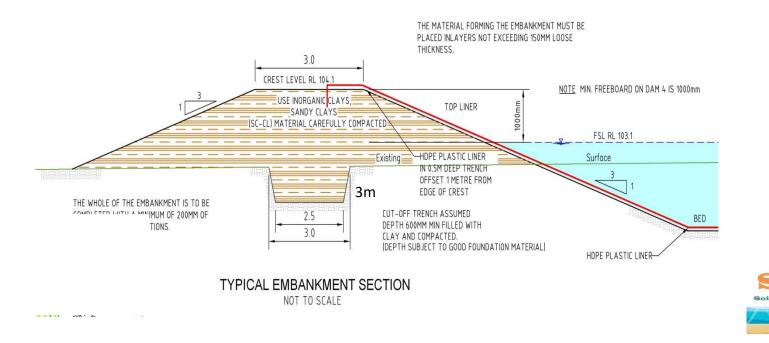
Dimensions of a gully dam.

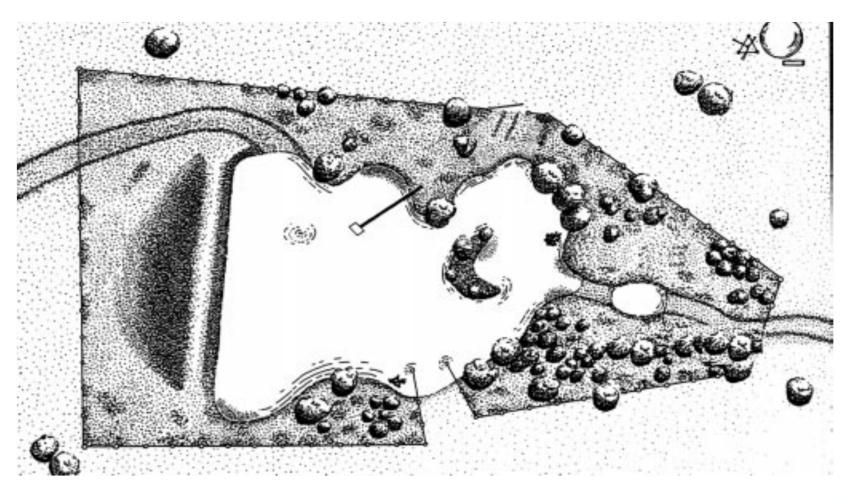
Calculating Earth in Gully Dam Wall

V = 0.175 * H * (2B + L) * (ZH + 2T)

Where: V = wall volume (m³)

- H = wall height (m)
- B = bottom width (m)
- L = length of wall at the top (m)
- Z = sum of upstream and (usually 6) downstream batter grades
- T = top width (m)


Building Farm Dams



Typical Dam Specifications

- Batters generally 3:1
- 3 metre crest width
- Min 1 metre freeboard from spillway to top dam wall
- Cut of trench 2 to 3 metres wide into solid base

Managing your Dam

Managing your Dam

- Fence out dam
- Control stock access to reduce erosion and improve water quality
- Syphon from dam to a water trough if possible
- Construct silt trap upstream of dam and maintain vegetated area in flow line to capture sediment
- Plant trees around dam where possible to:
 - Not on dam wall
 - Help reduce evaporation. (wind and sun)
 - Reduce wave action in water against wall of dam (erosion issue)
 - Reduce water temperature to help control algal blooms

